Question Number		Mark
1 (a)	Use of suitable equation(s) of motion to find distance $\begin{equation*} \text { Height = } 7.4 \text { (m) } \tag{1} \end{equation*}$ (accept 9.8(1)/6 or 1.635 for acceleration but do not accept g/6 as a substitution if final answer is wrong and looking to award MP1 only) (a reverse argument leading to $t=2.9 \mathrm{~s}$ can score both marks) Example of calculation $\begin{aligned} & s=1 / 2 a t^{2} \\ & s=1 / 2 \times\left(9.81 \mathrm{~m} \mathrm{~s}^{-2} / 6\right) \times(3 \mathrm{~s})^{2} \\ & s=7.4 \mathrm{~m} \end{aligned}$	2
1 (b)(i)	Use of trig function appropriate to calculate vertical component of velocity Or $10.1\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ seen Use of suitable equation(s) of motion to find time $\begin{equation*} t=12.4(\mathrm{~s}) \tag{1} \end{equation*}$ (if v and u not consistent with sign of g max 2 marks. Calculation can be done for total time of 12.3 s with either total displacement $=0$ or $u=-$ v) Example of calculation $\begin{aligned} & u=18 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{x} \sin 34^{\circ}=10.1 \mathrm{~m} \mathrm{~s}^{-1} \\ & v=u+a t \\ & 0=10.1 \mathrm{~m} \mathrm{~s}^{-1}-\left(9.81 \mathrm{~m} \mathrm{~s}^{-2} / 6\right) \mathrm{x} t \\ & t=6.2 \mathrm{~s} \text { to max height } \\ & \text { time of flight }=12.4 \mathrm{~s} \end{aligned}$	3
1 (b) (ii)	Use of trig function appropriate to calculate horizontal component of velocity Or $14.9\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ seen Or Use of Pythagoras Use of suitable equation(s) of motion to find distance $\begin{equation*} \text { Distance = } 185 \text { (m) (ecf time value from part (i)) } \tag{1} \end{equation*}$ Example of calculation $\begin{aligned} & v=18 \mathrm{~m} \mathrm{~s}^{-1} \times \cos 34^{\circ}=14.9 \mathrm{~m} \mathrm{~s}^{-1} \\ & s=v t=14.9 \mathrm{~m} \mathrm{~s}^{-1} \times 12.4 \mathrm{~s} \\ & s=185.0 \mathrm{~m} \end{aligned}$	3

*1 (c	lower gravitational field strength: lower acceleration the idea of an increased time of flight (do not accept slower in place of lower) lack of atmosphere: no work done against friction Or no slowing/deceleration due to friction (accept air resistance or drag for friction)	(1) (1) (1)	3
	Total for question		11

Question Number	Answer		Mark
2(a)	$m g=m a$ either leading to $\mathrm{a}=\mathrm{g}$ or a statement that the masses cancel Example of answer $F=m a \text { and } W=m g$ $m g=m a$ $a=g$	(1)	1
2(b)(i)	$\begin{aligned} & s=1 / 2 a t^{2} \\ & \text { Or } a=2 s / t^{2} \\ & \text { Or } s=u t+1 / 2 a t^{2} \text { and } u=0 \\ & \\ & \text { (allow } g \text { for } a \text { and } h \text { for } s \text {) } \end{aligned}$	(1)	1
2(b)(ii)	Either Parallax(in measuring s) Or the ruler was not vertical/perpendicular Giving a larger value for s (than the actual value) Or The frame rate was incorrect Or the idea that the initial velocity of the ball was not zero Giving a lower value for the measured time Examples The ball was dropped before the camera started recording or the ball was dropped before the first frame or the ball was dropped from above the ruler. (Do not accept ball was thrown)	(1) (1) (1) (1)	2
	Total for Question		4

Question Number	Answer		Mark
3(a)(i)	So that it can store/transfer elastic/strain (potential) energy Or to produce a (restoring) force on the arm (accept pull for force i.e. 'pull arm up')	(1)	1
3(a)(ii)	Elastic/strain (potential) energy $\rightarrow E_{\text {grav }}+/$ and E_{k} (+/and thermal energy)	(1)	1
*3(b)(i	(QWC - work must be clear and organised in a logical manner using technical terminology where appropriate) Either (the greater the angle) the greater the energy (stored) greater kinetic energy (transferred to projectile/arm) greater (initial) (horizontal) velocity of the projectile $s=u t$ linked to a greater range Or the greater the angle the greater the force/stress/tension the greater the acceleration (of the arm/projectile) greater (initial) (horizontal) velocity of the projectile $s=u t$ linked to a greater range (Accept symbols for words)	(1) (1)	4
3(b)(ii)	Increases acceleration Or increases (initial) velocity (of the projectile)	(1)	1

3(b)(iii)	One modification One reason (Modification and reason must be lin	ked for both marks to be awarded) Would increase the force/tension Or would increase energy (stored) Or would increase the work done Would increase the force/tension Or would increase energy (stored) Or would increase the work done Greater (vertical) distance to fall Projectile launched with an upwards component of velocity or at an angle	$\begin{aligned} & \hline \text { (1) } \\ & \text { (1) } \end{aligned}$	2
3(c)(i)	$\begin{aligned} & \text { Use of } s=u t+1 / 2 a t^{2} \\ & t=0.13(\mathrm{~s}) \\ & \\ & \text { Example of calculation } \\ & 0.08 \mathrm{~m}=1 / 2 \times 9.81 \mathrm{~m} \mathrm{~s}^{-2} \times t^{2} \\ & t=0.128 \mathrm{~s} \end{aligned}$			2
3(c)(ii)	Use of $v=s / t$ to calculate horizontal speed Or see $10.6\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Use of $s=10.6 \times t$ $s=1.4 \mathrm{~m} \quad$ ecf for time from (i) (using show that value $s=1.06 \mathrm{~m}$) Example of calculation $\begin{aligned} & u_{\text {horizontal }}=\frac{1.70 \mathrm{~m}}{0.16 \mathrm{~s}}=10.6 \mathrm{~m} \mathrm{~s}^{-1} \\ & s=10.6 \mathrm{~m} \mathrm{~s}^{-1} \times 0.13 \mathrm{~s} \\ & s=1.38 \mathrm{~m} \end{aligned}$		$\begin{aligned} & \text { (1) } \\ & \text { (1) } \\ & \text { (1) } \end{aligned}$	3
	Total for question			14

\begin{tabular}{|c|c|c|c|}
\hline Question Number \& Answer \& \& Mark \\
\hline 4(a) \& \begin{tabular}{l}
Reaction/ \(R\) / (normal) contact force/ force of floor/force of lift (on passenger) etc. \\
(not normal/ \(N\)) \\
Weight/W/mg \\
(Subtract 1 mark for each additional force/arrow if more than 2 forces on diagram. Arrows must begin on the dot)
\end{tabular} \& (1)

(1) \& 2 \\

\hline 4(b)(i) \& | Calculates the difference between scale readings e.g $(73 \mathrm{~g}-60 \mathrm{~g})$ or $(73-60)$ or $128(\mathrm{~N})$ or $13(\mathrm{~kg})$ seen |
| :--- |
| Use of $F=m a$ to find a $\text { Acceleration }=2.1\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ |
| Example of calculation $\begin{aligned} & \text { Resultant force }=\left(73 \mathrm{~kg} \times 9.81 \mathrm{~N} \mathrm{~kg}^{-1}\right)-\left(60 \mathrm{~kg} \times 9.81 \mathrm{~N} \mathrm{~kg}^{-1}\right)=127.5 \mathrm{~N} \\ & 127.5 \mathrm{~N}=60 \mathrm{~kg} \times a \\ & a=2.13\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$ | \& | (1) |
| :--- |
| (1) |
| (1) | \& 3 \\

\hline 4(b)(ii) \& | Use of $a=\frac{v-24}{t}$ $a=(-) 1.9 \mathrm{~m} \mathrm{~s}^{-2}$ |
| :--- |
| Example of calculation $a=\frac{0-10 \mathrm{~m}^{-6}}{8.8 \mathrm{~m}}=-1.89 \mathrm{~m} \mathrm{~s}^{-2}$ | \& \[

\overline{(1)}
\]

(1) \& 2 \\

\hline 4(c) \& | Labelled region of laminar flow showing parallel streamlines. |
| :--- |
| Labelled region of turbulent flowing showing adjacent streamlines crossing and/or eddies. | \& | (1) |
| :--- |
| (1) | \& 2 \\

\hline \& Total for Question 15 \& \& 9 \\
\hline
\end{tabular}

Question Number	Answer		Mark
5(a)(i)	Laminar flow - no abrupt change in direction or speed of flow or air flows in layers/flowlines/streamlines or no mixing of layers or layers remain parallel or velocity at a (particular) point remains constant Turbulent flow - mixing of layers or contains eddies/vortices or abrupt/random changes in speed or direction	(1) (1)	2
5(a)(ii)	Relative speed of upper surface of ball to air is greater (than at lower surface) Or The idea that the direction of movement at the top (due to spin) is opposite to/against (direction of) air flow (converse arguments acceptable)	(1)	1
5(b)	Force (by ball) on air upwards (Equal and) opposite force (on ball) by air $\mathbf{O r}$ (Equal and) opposite force acts due to Newton's $3^{\text {rd }}$ law $\mathbf{O r}$ force of air on ball downwards		2
5(c)(i)	Use of $v=s / t$ Use of $s=1 / 2 a t^{2}$ to find s or use of correct equations that could lead to the final answer. Distance $=0.037(\mathrm{~m})$ Example of calculation $\begin{aligned} & \text { Time }=2.7 / 31=0.087 \mathrm{~s} \\ & s=1 / 2 \times 9.81 \mathrm{~m} \mathrm{~s}^{-2} \times(0.087 \mathrm{~s})^{2} \\ & =0.037(\mathrm{~m}) \end{aligned}$	(1) (1) (1)	3
5(c)(ii)	(Extra) downwards force (on the ball) Greater downwards acceleration Greater distance fallen Or drops further(in that time) Or needs to drop 15 cm , 4 cm drop not enough	(1) (1) (1)	3
	Total for question		11

Question Number	Answer	Mark
6(a)	Calculate maximum energy Use of gpe $=m g h(1)$ Correct answer (0.28 J) (1) Example of calculation gpe $=m g h$ $=0.41 \mathrm{~kg} \times 9.81 \mathrm{~N} \mathrm{~kg}^{-1} \times 0.07 \mathrm{~m}$ $=0.28 \mathrm{~J}$ [N.B. Bald answer gets 2, but no marks if derived from use of $v^{2}=u^{2}+2 a s$]	(2)
6(b)	Resolve this velocity into horizontal and vertical components. Shows a correct, relevant trigonometrical relationship (1) Correct answer for horizontal component ($12 \mathrm{~m} \mathrm{~s}^{-1}$) (1) Correct answer for vertical component ($10 \mathrm{~m} \mathrm{~s}^{-1}$) (1) (max 1 mark total for reversed answers) (apply ue once only) Example of calculation $\begin{aligned} & v_{h}=v \cos \theta \\ & =16 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{x} \cos 40^{\circ} \\ & =12.3 \mathrm{~m} \mathrm{~s}^{-1} \\ & v_{v}=v \sin \theta \\ & =16 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{x} \sin 40^{\circ} \\ & =10.3 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	(3)
6(c)	Explain another reason why the projectile does not go as far as expected. (QWC - Work must be clear and organised in a logical manner using technical wording where appropriate) Max 2 out of three marking points for: A physical cause - e.g. other parts of the machine are moving/the sling stretches/headwind/fired up a slope/the projectile increases in height before release (1) Description of energy elsewhere than the projectile - e.g. elastic energy in sling/moving parts have ke / projectile has gained gpe before launch [Must refer to energy] (1) Stating that less energy has been transferred to the projectile/projectile has a lower speed (1)	(max 2)
	Total for question	7

Question Number	Answer	Mark
7(a)	Show that the resultant force on the rocket is about $4 \times 10^{6} \mathrm{~N}$ Use of $\mathrm{W}=\mathrm{mg}$ (1) State or use resultant force $=$ upward force - weight (1) Correct answer to at least $2 \mathrm{~s} . \mathrm{f}$. [$4.2 \times 10^{6} \mathrm{~N}$] (1) [no ue] Example of calculation $\begin{aligned} & \mathrm{W}=\mathrm{mg} \\ & \mathrm{~W}=3.04 \times 10^{6} \mathrm{~kg} \times 9.81 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2} \\ & =2.98 \times 10^{7} \mathrm{~N} \\ & \text { Resultant force }=3.4 \times 10^{7} \mathrm{~N}-2.98 \times 10^{7} \mathrm{~N}=4.2 \times 10^{6} \mathrm{~N} \\ & \hline \end{aligned}$	3
7(b)	Calculate the initial acceleration. Use of $F=m a(1)$ Correct answer [1.38 $\mathrm{m} \mathrm{s}^{-2}$] (1) [ecf] Example of calculation $\begin{aligned} & \mathrm{a}=\mathrm{F} / \mathrm{m} \\ & =4.2 \times 10^{6} \mathrm{~N} / 3.04 \times 10^{6} \mathrm{~kg} \\ & =1.38 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	2
7(c)	Calculate the average acceleration. Use of $v=u+$ at (1) Correct answer [15.9 $\mathrm{m} \mathrm{s}^{-2}$] (1) [beware same unit error as part b not penalised] Example of calculation $\begin{aligned} & \mathrm{a}=(\mathrm{v}-\mathrm{u}) / \mathrm{t} \\ & =\left(2390 \mathrm{~m} \mathrm{~s}^{-1}-0\right) / 150 \mathrm{~s} \\ & =15.9 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	2
7(d)	Suggest a reason for the difference in the values of acceleration calculated. e.g. Mass decreasing / weight decreasing / net upward force increasing / fuel used up / gets lighter / g decreasing / air resistance decreasing with altitude (1)	1
	Total for question	8

