Question			Mark
Number			
1 (a)	Use of suitable equation(s) of motion to find distance	(1)	
	Height = 7.4 (m)	(1)	2
	(accept 9.8(1)/6 or 1.635 for acceleration but do not accept g/6 as a substitution if final answer is wrong and looking to award MP1 only) (a reverse argument leading to $t = 2.9$ s can score both marks)		
	Example of calculation $s = \frac{1}{2} at^2$ $s = \frac{1}{2} x (9.81 \text{ m s}^{-2} / 6) x (3 \text{ s})^2$ s = 7.4 m		
1 (b)(i)	Use of trig function appropriate to calculate vertical component of velocity $\mathbf{Or} \ 10.1 \ (m \ s^{-1})$ seen	(1)	
	Use of suitable equation(s) of motion to find time	(1)	
	t = 12.4 (s)	(1)	3
	(if v and u not consistent with sign of g max 2 marks. Calculation can be done for total time of 12.3 s with either total displacement =0 or u =- v)		
	Example of calculation $u = 18 \text{ m s}^{-1} \text{ x sin } 34^\circ = 10.1 \text{ m s}^{-1}$ v = u + at $0 = 10.1 \text{ m s}^{-1} - (9.81 \text{ m s}^{-2} / 6) \text{ x } t$		
	t = 6.2 s to max height time of flight = 12.4 s		
1 (b) (ii)	Use of trig function appropriate to calculate horizontal component of velocity Or 14.9 (m s ^{-1}) seen		
	Or Use of Pythagoras Use of suitable equation(s) of motion to find distance	(1) (1)	
	Distance = 185 (m) (ecf time value from part (i))	(1)	3
	Example of calculation $v= 18 \text{ m s}^{-1} \times \cos 34^\circ = 14.9 \text{ m s}^{-1}$ $s = vt = 14.9 \text{ m s}^{-1} \times 12.4 \text{ s}$ s = 185.0 m		

*1 (c	lower gravitational field strength:	
	lower acceleration (1)	
	the idea of an increased time of flight (1)	
	(do not accept slower in place of lower)	
	lack of atmosphere:	
	no work done against friction	
	Or no slowing/deceleration due to friction (1)	
	(accept air resistance or drag for friction)	3
	Total for question	11

Question Number	Answer		Mark
2(a)	mg = ma either leading to a = g or a statement that the masses cancel	(1)	1
	Example of answer		
	F = ma and $W = mg$		
	mg = ma $a = g$		
2(b)(i)	$s = \frac{1}{2}at^2$		
	Or $a = 2s/t^2$	(1)	1
	$\mathbf{Or} \ s = ut + \frac{1}{2} \ at and \ u = 0$	(1)	1
	(allow g for a and h for s)		
2(b)(ii)	Either		
	Parallax(in measuring s)		
	Or the ruler was not vertical/perpendicular	(1)	
	Giving a larger value for <i>s</i> (than the actual value)	(1)	
	Or		
	The frame rate was incorrect Or the idea that the initial velocity of the ball was not zero	(1)	
	Giving a lower value for the measured time	(1)	2
	Examples		
	The ball was dropped before the camera started recording or the ball		
	was dropped before the first frame or the ball was dropped from		
	(Do not accept ball was thrown)		
	Total for Question		4

Question Number	Answer	Mark
3(a)(i)	So that it can store/transfer elastic/strain (potential) energy Or to produce a (restoring) force on the arm (1) (accept pull for force i.e. 'pull arm up')	1
3(a)(ii)	Elastic/strain (potential) energy $\rightarrow E_{\text{grav}}$ +/and E_k (+/and thermal (1) energy)	1
*3(b)(i	(QWC - work must be clear and organised in a logical manner usingtechnical terminology where appropriate)Either(the greater the angle) the greater the energy (stored)(1)greater kinetic energy (transferred to projectile/arm)(1)greater (initial) (horizontal) velocity of the projectile(1) $s = ut$ linked to a greater range(1) Or (1)the greater the angle the greater the force/stress/tension(1)greater (initial) (horizontal) velocity of the projectile)(1)or(1)the greater the acceleration (of the arm/projectile)(1)greater (initial) (horizontal) velocity of the projectile(1)s = ut linked to a greater range(1)(1)(1)greater (stress) for words)(1)	4
3(b)(ii)	Increases acceleration Or increases (initial) velocity (of the projectile) (1)	1

3(b)(iii)	One modification		(1)	
	One reason		(1)	2
	(Modification and reason must be lin	ked for both marks to be awarded)		
	Modification	Reason		
	Double up or increase number of	Would increase the force/tension		
	bands	Or would increase energy (stored)		
		Or would increase the work done		
	Replace with bands that are: stiffer	Would increase the force/tension		
	or shorter or wider or have greater	Or would increase energy (stored)		
	<i>k</i> (not smaller)	Or would increase the work done		
	Use a longer arm or raise the	Greater (vertical) distance to fall		
	device to a greater height			
	Tilt the model or cross bar	Projectile launched with an		
		upwards component of velocity or		
		at an angle		
3(c)(i)	Use of $s = ut + \frac{1}{2} at^2$		(1)	•
	t = 0.13 (s)		(1)	2
	Example of calculation			
	$\overline{0.08 \text{ m}} = \frac{1}{2} \times 9.81 \text{ m s}^{-2} \times t^2$			
	t = 0.128 s			
2(a)(ii)	Use of $y = g/t$ to calculate herizontal	$anad Or and 10.6 (m a^{-1})$	(1)	
5(c)(ll)	Use of $y = 3/t$ to calculate nonzontal Use of $s = 10.6 \times t$	speed Of see 10.0 (III s)	(1) (1)	
	s = 1.4 m ecf for time from (i)		(1) (1)	3
	(using show that value $s = 1.06$ m)			
	Example of calculation			
	$u_{\text{horizontal}} = \frac{1.70 \text{ m}}{2.16 \text{ m}} = 10.6 \text{ m s}^{-1}$			
	$s = 10.6 \text{ m s}^{-1} \times 0.13 \text{ s}$			
	<i>s</i> = 1.38 m			
	Total for question			14

Question	Answer		Mark
Number			
4(a)	Reaction/ R / (normal) contact force/		
	force of floor/force of lift (on passenger) etc.	(1)	
	(101 101111a1/1v)		
	\wedge		
	Ψ		
	¥		
	Weight/W/mg	(1)	2
	(Subtract 1 mark for each additional force/arrow if more than 2 forces on		
	diagram Arrows must begin on the dot)		
4(b)(i)	Calculates the difference between scale readings		
	e.g $(73g - 60g)$ or $(73 - 60)$ or 128 (N) or 13 (kg) seen	(1)	
	Use of $F = ma$ to find a	(1)	
			2
	Acceleration = $2.1 \text{ (m s}^2)$	(1)	3
	Example of calculation		
	Resultant force $-(73 \text{ kg} \times 9.81 \text{ N kg}^{-1})-(60 \text{ kg} \times 9.81 \text{ N kg}^{-1}) - 127.5 \text{ N}$		
	$1275 \text{ N} = 60 \text{ kg} \times a$		
	$a = 2.13 \text{ (m s}^{-2})$		
4(b)(ii)	Use of $a = \frac{v-u}{v}$	(1)	
	$a = (-) 1.9 \text{ m s}^{-2}$	(1)	2
	u = (1) 1.5 m/s		
	Example of calculation		
	$a = \frac{0 - 10 \text{ m s}^{-4}}{10 \text{ m s}^{-2}} = -1.89 \text{ m s}^{-2}$		
A(-)	<u>u</u>		
4(C)	laminar		
	Arrows not		
	required		
	laminar		
		(1)	
	Labelled region of laminar flow showing parallel streamlines.	(1)	
	Labelled region of turbulent flowing showing adjacent streamlines crossing	(1)	2
	and/or edules.	(-)	-
	1 otal for Question 15		9

Question Number	Answer		Mark
5(a)(i)	Laminar flow – no abrupt change in direction or speed of flow or		
	air flows in layers/flowlines/streamlines or no mixing of layers or layers		
	remain parallel or velocity at a (particular) point remains constant	(1)	
	Turbulent flow – mixing of layers or contains eddies/vortices or		
	abrupt/random changes in speed or direction	(1)	2
5(a)(ii)	Relative speed of upper surface of ball to air is greater (than at lower surface)		
	Or		
	The idea that the direction of movement at the top (due to spin) is opposite		
	to/against (direction of) air flow	(1)	1
	(converse arguments acceptable)		
5(b)	Force (by ball) on air upwards	(1)	
	(Equal and) opposite force (on ball) by air Or (Equal and) opposite force acts		
	due to Newton's 3 th law Or force of air on ball downwards	(1)	2
5(c)(i)	Use of $v = s/t$	(1)	
	Use of $s = 1/2 at^2$ to find s or use of correct equations that could lead to the		
	final answer.	(1)	
	Distance = $0.037 (m)$	(1)	3
	Example of calculation		
	11me = 2.7/31 = 0.08/8 s = 1/2 x 0.81 m c ⁻² x (0.087 c) ²		
	$S = 1/2 \times 9.81 \text{ m/s} \times (0.087 \text{ s})$ = 0.037 (m)		
5(c)(ii)	(Extra) downwards force (on the ball)	(1)	
	Greater downwards acceleration	(1)	
	Greater distance fallen Or drops further(in that time) Or needs to drop 15 cm.		
	4 cm drop not enough	(1)	3
	Total for question		11

Question	Answer	Mark
Number		
6(a)	Calculate maximum energy	
	Use of any $-mah(1)$	
	Use of $gpe = mgn$ (1) Correct answer (0.28 I) (1)	(2)
	(0.203)(1)	(2)
	Example of calculation	
	gpe = mgh	
	$= 0.41 \text{ kg x } 9.81 \text{ N kg}^{-1} \text{ x } 0.07 \text{ m}$	
	= 0.28 J	
	[N.B. Bald answer gets 2, but no marks if derived from use of $v^2 = u^2 + 2as$]	
6(b)	Resolve this velocity into horizontal and vertical components.	
	Shows a correct, relevant trigonometrical relationship (1) Connect on series for hearing state connection $(12 \text{ m} \text{ s}^{-1})$ (1)	
	Correct answer for vortical component (12 m s ⁻¹) (1)	
	(max 1 mark total for reversed answers)	
	(apply up once only)	(3)
	(upply de once only)	(0)
	Example of calculation	
	$v_h = v \cos \theta$	
	$= 16 \text{ m s}^{-1} \text{ x} \cos 40^{\circ}$	
	$= 12.3 \text{ m s}^{-1}$	
	$v = v \sin \theta$	
	$v_v = v \sin \theta$ = 16 m s ⁻¹ x sin 40°	
	$= 10 \text{ m/s}^{-1} \text{ m/s}^{-1}$	
6(c)	Explain another reason why the projectile does not go as far as expected.	
	(OWC Work must be clear and argumined in a logical manner using	
	(QWC - Work must be clear and organised in a logical manner using technical wording where appropriate)	
	teennear wording where appropriate)	
	Max 2 out of three marking points for:	
	A physical cause – e.g. other parts of the machine are moving/the sling	
	stretches/headwind/fired up a slope/the projectile increases in height	(max 2)
	before release (1)	
	Description of energy elsewhere than the projectile $-e.g.$ elastic energy	
	in sling/moving parts have ke / projectile has gained gpe before launch	
	[Must refer to energy] (1)	
	Stating that less energy has been transferred to the projectile/projectile	
	has a lower speed (1)	
	i otal for question	/

Question	Answer	Mark
Number		
7(a)	Show that the resultant force on the rocket is about 4 x 10° N	
	$1 \log \alpha f M = m \pi (1)$	
	Use of $W = mg(1)$	
	State of use resultant force = upward force - weight (1) Correct answer to at least 2 of $[4.2 \times 10^6 \text{ N}]$ (1) [no us]	2
		3
	Example of calculation	
	M = ma	
	W = 110 $W = 2.04 \times 10^{6} \text{ kg x } 0.91 \text{ kg m s}^{-2}$	
	$V = 3.04 \times 10^{-7} \text{ N}$	
	Posultant force = $3.4 \times 10^7 \text{ N} = 2.98 \times 10^7 \text{ N} = 4.2 \times 10^6 \text{ N}$	
7 (b)	Calculate the initial acceleration	
7(0)		
	Use of $F = ma(1)$	
	Correct answer [1.38 m s ⁻²] (1) [ecf]	2
		-
	Example of calculation	
	a = F/m	
	$= 4.2 \times 10^6 \text{ N} / 3.04 \times 10^6 \text{ kg}$	
	$= 1.38 \text{ m s}^{-2}$	
7 (c)	Calculate the average acceleration.	
	Use of $v = u + at$ (1)	
	Correct answer [15.9 m s ⁻²] (1) [beware same unit error as part b not	2
	penalised]	
	Example of calculation	
	a = (V - U) / t	
	$= (2390 \text{ ms}^3 - 0) / 150 \text{ s}$	
7(1)	$= 15.9 \text{ m s}^{-2}$	
7(d)	Suggest a reason for the difference in the values of acceleration	
	a d Mass decreasing / weight decreasing / not unward force	1
	increasing / fuel used up / dets lighter / a decreasing / air resistance	I
	decreasing with altitude (1)	
	Total for question	8